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Abstract

Existing building performance programs addressing carbon emissions typically use
energy as a proxy for carbon or use a single carbon emissions factor to convert annual energy use
to an annual carbon value. In reality, the magnitude of emissions associated with electrical power
generation varies with time and grid region. This study compares the use of an annual emissions
factor to hourly marginal operating emissions rates (MOERS) in building carbon emissions
calculations. Measured energy performance data from a case study net zero energy building is
used to compute carbon emissions with and without the building’s on-site PV production using
both calculation methods. The results show that calculation with MOERs produces a greater
magnitude of annual carbon savings from PV, but a minimal difference in carbon savings ratio.
Examination of hourly data suggests the latter result is due to a low correlation between this
particular building’s time of use and the MOERs, and that a different result might be observed
for a more grid-responsive building. These results have two implications for the use of MOERS
in building carbon calculations. First, MOERs facilitate examination of a building’s time of use
impacts on the grid, but more work is needed to develop building carbon performance metrics
that capture these effects. Second, MOERs allow the high performance building design process
to expand beyond traditional energy efficiency measures and assess the impacts of fuel switching
and shifting time of use through energy storage or demand control, and should be incorporated
into building simulation tools.

Introduction

The need to decarbonize the building sector is necessitating a shift away from energy
performance metrics and toward the use of carbon-based metrics in building design and
operation. As a climate change mitigation strategy, focusing on and improving building energy
performance has long been used as a proxy for reducing building carbon emissions. While
commonly used energy performance metrics such as annual site energy use intensity (EUI)
enable improvements in energy efficiency, they don’t allow assessment of strategies such as fuel
switching and shifting time of use through demand control and storage that will play a critical
role in decarbonizing the building sector.

Recognizing the importance of using carbon-based metrics, many organizations and local
jurisdictions are adopting these into their building performance policies and programs. New
York City’s Local Law 97, passed in May 2019, sets carbon emissions intensity limits for energy
use in commercial and multifamily residential buildings greater than 25,000 square feet, with
penalties for noncompliance (New York City Council 2019). The latest version of the
International Living Future Institute’s Living Building Challenge includes a net positive carbon



imperative, requiring projects to offset both operational and embodied carbon and prohibiting
on-site combustion (International Living Future Institute 2019).

The method these programs use for converting energy consumption to carbon emissions
uses a location-specific single annual average emission factor and does not reflect the time-
dependent nature of carbon emissions from the electric grid. In reality, carbon emissions vary
with both location (grid region) and time, as different types of generators (e.g., nuclear, coal-
fired, natural gas-fired, photovoltaic) are brought on- and off-line in response to changes in load
and in an order reflecting the marginal cost of generation. Consequently, avoided carbon
emissions associated with building electricity savings or use of on-site renewable energy will
also vary based on the location and time of savings (Siler-Evans, Azevedo, and Morgan 2012).

The goal of this paper is to compare the use of an annual average emissions factor to
hourly emissions factors in building carbon emissions calculations using a case study building. In
short, we ask: What are the benefits of using hourly emissions factors over a single average
annual carbon value in calculating operational emissions? A net zero energy (NZE) building was
selected as the case study because NZE buildings represent the epitome of current high
performance building design and allows us to explore the extent to which a NZE building is also
net zero carbon. The methodology and results from this paper can inform policy and programs
addressing building carbon emissions, as well as the design of high performance buildings.

Data and Methods

In this study, we use three datasets to compute building energy and carbon metrics:
hourly building energy consumption and on-site renewable energy generation for our case study
building, annual average carbon emissions factors, and hourly marginal operating emissions rates
for the relevant balancing authority (i.e. the entity responsible for balancing electricity supply
and demand in real time for each specific grid region).

Case Study Building

The Kohler Environmental Center (KEC) at Choate Rosemary Hall is a 29,325 square
foot academic and residential facility located in Wallingford, Connecticut (International Living
Future Institute 2020). Completed in 2012, the building contains laboratories, classrooms, and a
research greenhouse, as well as residential facilities for up to 20 students. From the outset, the
building was designed to achieve net zero energy performance, and it incorporates a variety of
passive design strategies to reduce demand: highly insulated roof and walls, overhangs and
shading, daylighting, and operable windows.

Heating and cooling are provided by a ground source heat pump system; earth ducts and
energy recovery ventilators are used to pretreat outdoor air. When it originally opened, the
building used a waste oil boiler to heat the greenhouse, fueled by cooking oil or biofuel; this was
removed in March of 2016 and replaced with an electric boiler to eliminate on-site combustion
(J. Scanio, program director, Kohler Environmental Center, pers. comm., March 5, 2020). A 294
kW grid-connected ground-mounted photovoltaic (PV) array and roof-mounted evacuated tube
solar thermal panels provide over 100% of the building’s operational energy needs. This net
positive energy building is a certified LEED Platinum building, and is also certified under the



Living Building Challenge. The building provides information and feedback to the occupants for
teaching and learning purposes through an energy management system (EMS).

The KEC was selected as a case study for this paper due to its exemplary energy
performance and the availability of operational energy data for the project, provided by the
building owner to the authors. In the context of this study, it provides a benchmark example of a
grid-connected net zero energy building operating on the U.S. power grid.

Metered interval data from the local utility was not readily available for this building,
which is served by a small municipal utility. In lieu of this, the building owner provided the
authors with hourly whole-building electricity consumption and PV production data downloaded
from the building’s EMS. Data for both variables was provided from July 2012 through
December 20109.

The energy consumption and PV production data contained missing values due to data
collection errors in the EMS, and each variable had different patterns of missing data. Table 1
shows the number of pairwise complete observations (i.e., hours containing both electricity and
PV observations), and number of observations for each variable by year; for comparison, a
complete year would contain 8,760 hourly observations. To fill in (i.e., impute) missing data,
data from the post-oil boiler removal period (i.e., April 2016 through December 2019) was
averaged by month, hour, and weekend or weekday to produce a lookup table of average energy
consumption and PV production over that period. Each missing hour was completed using the
corresponding average value for its hour, month, and whether it was a weekend or weekday.
While this method provides complete hourly data, it provides only limited assessment of the true
year-to-year variation in building performance, as multi-year averaged values are used where
values are missing.

Table 1: Count of EMS observations by variable and year

Year | Pairwise Electricity and PV | Electricity Consumption | PV Production
Observations Observations Observations
2012 2,410 2,386 3,789
2013 6,430 7,960 7,161
2014 5,803 8,000 6,538
2015 6,498 7,241 7,150
2016 7,226 8,202 8,684
2017 7,174 7,182 8,631
2018 3,670 5,506 4,298
2019 6,539 6,656 6,539

To align with the dates of available marginal carbon emissions data, the years 2018 and
2019 are used as the period of performance for this analysis. Figure 1 plots post-imputation
monthly building electricity consumption, PV production, and net electricity consumption for the
analysis period. The plot shows higher electricity demand in the winter compared to the summer
for both years. This trend is expected in an all-electric building, and the seasonal demand profile
for the electric grid as a whole will likely change in response to widespread building
electrification (Hewitt and Coakley 2019). The profiles are similar across both years, showing



net positive energy in most months of the year, with net consumption occurring only in the
winter months when building electricity demand is highest and PV production is lowest.
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Figure 1: Post-imputation monthly building energy consumption and PV production for the KEC

Carbon Emissions Factors

Annual average emissions factors. Single annual average carbon emission factors are widely
used by governmental, non-governmental, and for-profit organizations to convert building
electricity consumption to CO> (or CO-equivalent) emissions for the purposes of carbon
footprinting, benchmarking, and purchasing offsets. This is a single annual emissions rate
representing average carbon emissions for all generators across the entire year.

For this study, we use annual average emission factors for the 2018 calendar year from
the Emissions & Generation Resource Integrated Database (eGRID), developed by the U.S.
Environmental Protection Agency (EPA) (U.S. Environmental Protection Agency 2020). eGRID
provides total annual emissions and emissions rates for a variety of emissions types (e.g., COz,
NOy, SO) for the electric power sector. Emissions data are aggregated at several levels,
including plant, state, balancing authority, and eGRID subregion (an EPA-defined area larger
than a single balancing authority). The annual average emissions factor for the Independent
System Operator New England (ISO-NE) balancing authority is 527.5 Ibs. of CO2/MWh and is
the value used in this study.

To convert building electricity consumption to annual average carbon emissions, the
annual net electricity consumption (i.e., electricity consumption less on-site renewable
generation for the year) in units of MWh is multiplied by the annual average carbon emissions
factor to determine Ibs. of CO> per year.

Marginal operating emissions rates. Whereas annual average emissions factors represent the
emissions from all generators on the grid, marginal operating emissions rates (MOERS) represent
the emissions from the marginal generators only, i.e., the last generators to meet demand at a
given time (Siler-Evans, Azevedo, and Morgan 2012). Because the marginal generators are also



the first to respond to a reduction in demand, marginal emissions are the best measure of avoided
emissions, and are therefore the best metric for evaluating the true impact of building demand
reduction or net generation on the grid (DiStefano and Richardson 2019). MOERs change
constantly as demand on the grid changes and different generators come online and go offline in
response to changes in load and in an order reflecting the marginal cost of generation (Siler-
Evans, Azevedo, and Morgan 2012); as a result, it is important to use sub-annual emissions
factors to evaluate the impact of a building on marginal emissions.

For this study, we use MOER data for the ISO-NE Connecticut balancing authority sub-
region provided by WattTime (WattTime 2020). WattTime uses a proprietary method to
compute MOERs in real-time, expanding on the method developed by Silver-Evans, Azevedo,
and Morgan (2012). MOER values were provided at 5-minute intervals from May 2017 through
December 2019 and are in units Ibs. CO2/MWh of electricity. All values within a given hour
were averaged to produce an average hourly MOER, which was used in this analysis.

To convert building electricity consumption to marginal carbon emissions, the net
building electricity consumption at each hour (i.e., electricity consumption less on-site renewable
generation for that hour) in units of MWh is multiplied by the MOER for that hour. This
methodology captures the impact of changing grid emissions by giving more credit to a building
implementing demand reduction measures or providing net generation to the grid during higher
MOER times. Conversely, a building receives less credit for reducing demand or providing net
generation during the lower MOER times. The MOERs effectively act as weights for a
building’s carbon emissions at a given hour.

For the purposes of visualizing trends in the MOER data, a heatmap of MOERs for each
year in the analysis period is shown in Figures 2 and 3. The figures show hourly MOER values
for each year, averaged based on month and weekday or weekend, as well as average values for
the entire analysis period. The data indicates higher marginal emissions during summer months,
especially July and August, and in the winter months, especially December and January.
Marginal emissions are also higher during the day, particularly during the early evening hours.
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Figure 2: Heatmap of hourly marginal operating emissions rates (MOERs) for 2018
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Figure 3: Heatmap of hourly marginal operating emissions rates (MOERs) for 2019

Figure 4 further illustrates the concept of marginal emissions compared to average
emissions. A histogram of the MOERs for each year in the analysis period is shown, as well as
the average annual emissions factor for ISO-NE balancing authority, provided from eGRID.
Typical marginal emissions ranges for natural gas and coal power plants are overlaid for
reference (World Nuclear Association 2011). The figure shows that the marginal generators for
this grid region are primarily natural gas power plants with minor use of coal power plants. The
marginal emissions rates for these generators are higher than the average annual emission rate of
527.5 Ibss§MWh.
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Figure 4: Histogram of hourly marginal operating emissions rates (MOERs) for the analysis period



Results

The results of the study are presented in Tables 2-4 and Figures 5-8.

Table 2 provides an annual summary of building electricity consumption, PV production,
and net consumption for both years in the analysis period. Intensities (computed per square foot
of building floor area) for each value are also provided, along with a savings ratio, computed as
the ratio of PV production to electricity consumption (i.e., the energy savings provided by PV).
Similar metrics have been used to evaluate the feasibility of net zero design (Eley 2016, 86-89).
The results show that the KEC is a net positive building, overproducing electricity compared to
its consumption in both years. The building’s EUI of around 30 kBtu/ft? without PV is consistent
with a typical high-performance building; its PV system is relatively large for its energy needs,
with a PV production intensity of around 42 kBtu/ft> ensuring overproduction. The building has
a savings ratio of 1.33 in 2018, meaning that the building produces 1.33 times the electricity it
consumes; this value increases to 1.42 in 2019.

Tables 3 and 4 provide a similar summary, but for annual carbon emissions. Carbon
emissions, emissions reductions, and net emissions are shown, along with carbon intensities for
each metric and the savings ratio. Table 3 summarizes carbon emissions using an annual
emissions factor, and Table 4 summarizes using hourly marginal operating emissions rates.

Table 3 indicates that the building achieves operational net zero carbon over the course of
the year. The savings ratio using an annual carbon emissions factor is the same as the value for
energy shown in Table 2; this is expected as this factor is a single multiplier.

Compared to Table 3, the magnitude of carbon emissions and emissions intensities in
Table 4 are higher. This is expected, given that the marginal emissions for the ISO-NE CT
subregion are higher than the annual emissions factor, as discussed in Figure 4. However, the
savings ratio computed using marginal operating emissions is similar to the value computed
using the annual emissions factor, suggesting that the building has equivalent annual energy and
carbon savings under both carbon calculation methods.

While the savings ratio does not reflect a difference between the two calculation methods
for this particular net positive building, the magnitude of the marginal operating emissions
reduction does reflect a difference. Both metrics are important; savings ratio provides a
comparative metric to reflect the relative effectiveness of carbon mitigation design decisions.
Marginal operating emissions reduction captures the real world impact of carbon efficiency
measures in terms of carbon emissions avoided.

Table 2: Annual summary of building electricity consumption

Year | Electricity PV Net EUI PV EUI Savings
Consumption | Production | Electricity | (no PV) | Production | w/PV Ratio
(kWh) (kWh) (kWh) (kBtu/ft) | (kBtu/ft*) | (kBtu/ft®)

2018 270,284 359,487 -89,203 31.45 41.83 -10.38 1.33

2019 256,172 363,155 -106,982 29.81 42.26 -12.45 1.42




Table 3: Annual summary of building carbon emissions based on annual emissions factor

Year | Annual Annual Net Emissions | Emissions | Emissions | Savings
Emissions | Emissions | Emissions | Intensity Intensity | Intensity | Ratio
(Ibs. CO2) | Reduction | (Ibs. CO2) | (no PV) from PV | w/PV (lbs.
(Ibs. CO2) (Ibs. (Ibs. CO/ft?)
COy/ft?) COy/ft?)
2018 | 142,575 189,629 -47,055 4.86 6.47 -1.60 1.33
2019 | 135,131 191,564 -56,433 4.61 6.53 -1.92 1.42
Table 4: Annual summary of building carbon emissions based on MOERs
Year | Marginal | Marginal | Net Emissions | Emissions | Emissions | Savings
Operating | Operating | Marginal | Intensity Intensity | Intensity Ratio
Emissions | Emissions | Operating | (no PV) from PV | w/PV (lbs.
(Ibs. CO2) | Reduction | Emissions | (Ibs. (Ibs. CO/ft?)
(Ibs. COy) | (Ibs. COy) | CO/ft?) CO/ft?)
2018 | 284,855 383,831 -98,976 9.71 13.09 -3.38 1.35
2019 | 265,553 385,640 -120,087 9.06 13.15 -4.10 1.45

Hourly plots provide insight about why the savings ratio is the same for both carbon
calculation methods. Figures 5-7 plot hourly building electricity consumption and PV production
on the left y-axis, and hourly MOERs on the right y-axis for representative 24-hour periods in
the spring, fall, and winter. These plots provide an hourly illustration of building electricity

consumption and production relative to the MOERSs; in a grid-responsive building, net

production periods would align with the hours with the highest MOERSs.
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Figure 5: Hourly electricity and MOER profiles for a representative spring day
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Figure 5 plots the hourly values for March 5, 2019. The building’s consumption profile
over this period is relatively flat, suggesting mostly passive conditioning of occupied spaces, and
little need for space heating or cooling. PV production occurs during times of comparatively low
marginal emissions, reducing marginal emissions less than if the production were shifted to later
hours through energy storage. Due to overproduction from on-site photovoltaics in this particular
project example, battery storage could be an effective carbon reduction measure, despite the
round trip losses associated with charging and discharging.

Figure 6 plots the hourly values for July 11, 2019. Similar to the spring plot, the
building’s consumption profile during this fall period is relatively flat, suggesting energy use
mostly for base loads. The MOERSs show two peaks in the grid emissions, one around 11:00 AM
and another around 8:00 PM. The PV production aligns fairly well with the first peak, but is
unable to offset energy use in the evening hours during the second grid emissions peak.
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Figure 6: Hourly electricity and MOER profiles for a representative summer day

Figure 7 plots the hourly values for December 12, 2019. The building’s consumption
profile reflects the need for space heating during the early morning hours, decreasing during the
day due to beneficial solar gains and internal loads, and increasing again in the late evening. The
MOER peaks around 6:00 PM, which does not align with the peak PV production during the day.
The building’s peak heating demand and PV production periods are both offset from peak
MOERs. Compared to the spring and fall, PV production in the winter is considerably lower,
failing to offset net building energy consumption for that day. The seasonal difference in PV
generation and MOER underlines the value of seasonal storage in considering how buildings can
effectively respond to grid MOERS.
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Figure 7: Hourly electricity and MOER profiles for a representative winter day

To further illustrate the misalignment between net building electricity consumption and
MOERs over the entire analysis period, Figure 8 provides a scatterplot of hourly net building
electricity consumption and hourly MOER. In a theoretical perfectly grid-responsive building,
this plot would show a perfect negative linear correlation, with times of high MOER
corresponding to times of low net electricity consumption (negative values indicate net
generation to the grid). The data for the case study building shows a large amount of scatter, and
no apparent linear trend. The correlation coefficient is r = -0.071, showing effectively no
relationship between the two variables. With no correlation between the MOERSs and energy use,
the weighting effect of the MOERSs effectively evens out over the course of the year, resulting in
an annual savings ratio similar to that calculated using a single annual average emissions factor.
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Figure 8: Scatterplot of hourly net building electricity consumption and hourly MOER



To examine the extent to which the MOER-based savings ratio would change with a
more grid-responsive building, hypothetical data was generated with a stronger correlation with
MOERs. Using the R package “fabricatr” (Blair et al. 2019), hypothetical data was generated
with a correlation coefficient of -0.90 between net electricity consumption and MOERs (i.e., as
MOERs increase, net electricity consumption decreases). The same annual metrics shown in
Tables 2-4 were then computed using the correlated data. The results showed that the savings
ratio for annual carbon was the same as for energy (1.69, a slight increase with the hypothetical
dataset compared to the case study building), but that the MOER-based carbon savings ratio
increased to 2.34 using the correlated dataset. This lends initial support to the idea that the
savings ratio for the three metrics is similar for the case study building because it is not grid-
responsive. Future work is needed to further investigate the use of MOER-based carbon metrics
on grid-responsive compared to non-grid responsive buildings.

Discussion and Conclusions

The goal of this study was to compare the use of an annual average emissions factor to
hourly marginal operating emissions rates in building carbon emissions calculations. The results
for this particular case study show a greater magnitude of annual carbon savings but minimal
difference in annual savings ratio computed using an annual average emissions factor compared
to calculations using hourly MOERs. However, hypothetical correlated data provides initial
evidence that a different result might be observed for a grid-responsive building, which shifts
time of use in response to the emissions of the grid. More work is needed to examine how these
results might change for non-net positive buildings, buildings in other grid regions, or buildings
which are grid-responsive.

Unlike annual average emissions factors, MOERs allow examination of hourly carbon
performance. Using MOERs is therefore advantageous compared to single annual average
factors because it provides an understanding of the impact of a building’s time of use patterns on
the grid. This result has important implications for building carbon performance metrics and for
high performance building design.

Building Carbon Performance Metrics

The use of annual emissions factors in most current building carbon emissions
calculations reflects a focus on how much carbon buildings use, rather than when they use it.
Fully decarbonizing the buildings sector will require buildings to be more responsive to their
time of use impacts on the grid, and this should be reflected in the carbon performance metrics
used in policies and standards, and by building designers and operators. Conceptually, marginal
emissions are the best measure of a building’s time of use impact on the grid, as the marginal
generator is the first to respond to changes in demand. Building carbon performance metrics
should therefore include the use of marginal emissions in addition to single annual average
emissions factors.

In this study, we examine some possible marginal emissions-based metrics that might
provide better guidance on a building’s grid-responsiveness and which could be readily
implemented into policy: net marginal operating emissions intensity, savings ratio (computed
based on marginal operation emissions rates), and the correlation coefficient between hourly net



electricity consumption and MOER. More work is needed to further develop metrics for grid-
responsive buildings and examine how they might compare for other case study buildings and in
other grid regions.

High Performance Building Design Implications

This study also illustrates the discrepancy between high performance building design and
grid-responsive building design. The case study building is an excellent example of a high
performance building, achieving net positive energy and zero net operational carbon on an
annual basis. As shown in Figures 5-8, the building could achieve even further carbon emissions
reductions through demand shifting or energy storage measures.

When designing a high performance building, energy efficiency measures achieved by
prioritizing climate-appropriate passive design and efficient systems will always be the most
effective carbon reduction measures. Energy or carbon-based metrics are appropriate to evaluate
these strategies and will lead a designer to the same design conclusions. However once a design
moves beyond efficiency to consider fuel switching, and shifting time of use through storage or
demand control, time-dependent carbon metrics are critical to evaluate decisions. This study
applied MOERs to post-occupancy measured data from a real building, but MOERs can and
should be applied to hourly building energy simulations to give designers a common metric to
evaluate the effectiveness of carbon efficiency measures and grid-responsive strategies.

Limitations

This study has several important limitations. First, only one case study building was used.
This study should be repeated in different grid regions and with different high performance
building designs (including buildings that are not net positive) to evaluate the extent to which
these findings differ with different building demand profiles and grids. Second, while in
principle the marginal carbon emissions calculation method used in this study is easily
replicable, it is dependent on the availability and quality of hourly building energy data and
marginal operating emissions rates. Similar to the KEC, many buildings still lack easy access to
utility-metered interval electricity consumption and on-site generation data. While real-time and
historical MOERs are available for many different locations in the U.S., they will undoubtedly
change in future years as utilities move towards meeting mandated renewable portfolio
standards; grid-responsive buildings should be flexible enough to respond to MOERs as a
moving target. Finally, the need for grid-responsive building design and operation highlighted in
this study requires tools that can support this shift. Despite recent advances in modeling demand
shifting and energy storage measures, these have yet to be implemented in the most commonly
used building energy simulation software.
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